Memetic Variable Clustering and Its Application
نویسندگان
چکیده
منابع مشابه
construction and validation of translation metacognitive strategy questionnaire and its application to translation quality
like any other learning activity, translation is a problem solving activity which involves executing parallel cognitive processes. the ability to think about these higher processes, plan, organize, monitor and evaluate the most influential executive cognitive processes is what flavell (1975) called “metacognition” which encompasses raising awareness of mental processes as well as using effectiv...
A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملMemetic Graph Clustering
It is common knowledge that there is no single best strategy for graph clustering, which justifies a plethora of existing approaches. In this paper, we present a general memetic algorithm, VieClus, to tackle the graph clustering problem. This algorithm can be adapted to optimize different objective functions. A key component of our contribution are natural recombine operators that employ ensemb...
متن کاملThe Interleaved Constructive Memetic Algorithm and its application to timetabling
Timetabling problems are well known NP-hard constraint satisfaction, and real-world cases often have complicated and challenging structures. For such problems, we present a new hybrid method, “Interleaved Constructive Memetic Algorithm” (ICMA) that interleaves memetic algorithms with constructive methods. ICMA works using an active subset of all the events. Starting with a few events, in multip...
متن کاملVariable selection for model-based high-dimensional clustering and its application to microarray data.
Variable selection in high-dimensional clustering analysis is an important yet challenging problem. In this article, we propose two methods that simultaneously separate data points into similar clusters and select informative variables that contribute to the clustering. Our methods are in the framework of penalized model-based clustering. Unlike the classical L(1)-norm penalization, the penalty...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2019
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2019/4195318